Package: saery 2.0
saery: Small Area Estimation for Rao and Yu Model
Functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
Authors:
saery_2.0.tar.gz
saery_2.0.zip(r-4.5)saery_2.0.zip(r-4.4)saery_2.0.zip(r-4.3)
saery_2.0.tgz(r-4.5-any)saery_2.0.tgz(r-4.4-any)saery_2.0.tgz(r-4.3-any)
saery_2.0.tar.gz(r-4.5-noble)saery_2.0.tar.gz(r-4.4-noble)
saery_2.0.tgz(r-4.4-emscripten)saery_2.0.tgz(r-4.3-emscripten)
saery.pdf |saery.html✨
saery/json (API)
# Install 'saery' in R: |
install.packages('saery', repos = c('https://small-area-estimation.r-universe.dev', 'https://cloud.r-project.org')) |
- datos - Dataset for saery package
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 months agofrom:edc63e704b. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 11 2025 |
R-4.5-win | OK | Mar 11 2025 |
R-4.5-mac | OK | Mar 11 2025 |
R-4.5-linux | OK | Mar 11 2025 |
R-4.4-win | OK | Mar 11 2025 |
R-4.4-mac | OK | Mar 11 2025 |
R-4.4-linux | OK | Mar 11 2025 |
R-4.3-win | OK | Mar 11 2025 |
R-4.3-mac | OK | Mar 11 2025 |
Exports:eblup.saeryeblup.saery.AR1eblup.saery.indepeblup.saery.MA1fit.saeryfit.saery.AR1fit.saery.indepfit.saery.MA1
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Small Area Estimation for Rao and Yu model | saery-package saery |
Dataset for saery package | datos |
The function 'eblup.saery' calculate the eblup and mse for a model. | eblup.saery eblup.saery.AR1 eblup.saery.indep eblup.saery.MA1 |
The function 'fit.saery' is used to fit the correct model for three options. | fit.saery fit.saery.AR1 fit.saery.indep fit.saery.MA1 |